一、MMU的介紹
MMU全稱Memory Management Unit,中文稱內(nèi)存管理單元
主要有兩個(gè)功能:
A.將虛擬地址轉(zhuǎn)換成實(shí)際的物理地址
B.對物理內(nèi)存設(shè)置訪問權(quán)限
二、MMU的工作過程
在s3c2410中MMU是由協(xié)處理器(cp15)控制的,s3c2410/s3c2440多會用到兩級頁表:以段(Section,1MB)的方式進(jìn)行轉(zhuǎn)換時(shí)只用到一級頁表,以頁(page)的方式進(jìn)行轉(zhuǎn)換時(shí)用到兩級頁表。頁的大小有3種:大頁(64KB),小頁(4KB),極小頁(1KB)。
明確一個(gè)概念:
條目也稱為"描述符"(Descriptor),有:段描述符,大頁描述符,小頁描述符,極小頁描述符----它們保存段、大頁、小頁或極小頁的起始物理地址;粗頁表描述符、細(xì)頁表描述符---他們保存二級頁表的物理地址
轉(zhuǎn)換過程如下:
(1) 根據(jù)給定的虛擬地址找到一級頁表中的條目
(2)如果此條目是段描述符,則返回物理地址,轉(zhuǎn)換結(jié)束
(3)如果此條目是二級頁表描述符,繼續(xù)利用虛擬地址在二級頁表中找到下一個(gè)條目;
(4)如果這第二個(gè)條目是葉描述符,則返回物理地址,轉(zhuǎn)換結(jié)束;
(5)其他情況出錯(cuò)

注意:這里面所有的轉(zhuǎn)換過程都是由MMU完成的
以段的方式映射實(shí)例說明:
例如:虛擬地址 0xa0004000
nbsp; 注意:當(dāng)MMU打開以后,所有的地址都會被MMU攔截,然后將其轉(zhuǎn)換,cpu是不管虛擬地址還是實(shí)際物理地址的。
轉(zhuǎn)換如下:

先來看看TTB

簡單的來說,它保存了一級頁表所存放的實(shí)際物理地址,要求16KB對齊,以段的方式映射,4GB的虛擬地址空間,需要段描述符4096個(gè)(每個(gè)段描述符映射1M空間),沒個(gè)描述符占用4byte,所以一段的方式映射一級頁表占用的空間為16KB。
在這里我們假設(shè),我們的一級頁表存放在物理地址:0x30000000.
第一步:
獲得虛擬地址所對應(yīng)的段描述符所在的地址
addr = TTB&0xffffc000 | ((viraddr >> 20) << 2 ) = 0x30000000 & 0xfffc000 | ((0xa0004000 >> 20) << 2)= 0x30000000 | (0xa00 << 2) = 0x30002800
第二步:
從0x30002800取出虛擬地址所對應(yīng)的段描述符

段描述的構(gòu)造我們到后面再來講解,這里我們假設(shè)我們把0xa0004000映射到實(shí)際的物理地址0x30004000,則這里的[31:20]為0x300
第三步:
組合成實(shí)際的物理地址

phyaddr = 0x300 << 20 | (0xa0004000 & 0xfffff) = 0x30004000
三.實(shí)驗(yàn)
目標(biāo):以段的方式映射s3c2410的地址空間,一級頁表存放在0x30000000
流程:
A.計(jì)算每個(gè)虛擬地址對應(yīng)段描述符所在的地址(addr),方法如下:

B.構(gòu)造段描述符

注意:Section base address 存放的是實(shí)際的物理地址的[31:20]
C.存放段描述符
(unsigned int *)addr = section descriptor
D.使能MMU
整個(gè)流程比較復(fù)雜的就是段描述符的構(gòu)造,具體的流程大家可以直接看芯片手冊,寫的很詳細(xì)
實(shí)例代碼:
/*Nand 啟動(dòng)sdram的起始地址*/
#define SRAM_START_ADDR 0x00000000
/*內(nèi)存空間地址*/
#define VMRAM_ADDR_START 0xa0000000
#define SDRAM_ADDR_END 0x34000000
/*IO空間地址*/
#define VMIO_ADDR_START 0xb0000000
#define PHIO_ADDR_START 0x56000000
#define PHIO_ADDR_END 0x56010000
/*用SDRAM起始地址開始的16KB,存放頁表*/
#define PAGE_TABLE_BASE 0x30000000
/*MASK*/
#define PAGE_TABLE_BASE_MASK 0xffffc000
#define VIRADDR_MASK 0xfff00000
#define PHYADDR_MASK 0xfff00000
/*頁表項(xiàng)內(nèi)容*/
#define PAGE_TABLE_SECTION_AP (0x01 << 10)
#define APGE_TABLE_SECTION_DOMAIN (0x0 << 5)
#define PAGE_TABLE_SECTION_CACHE_WB (0x0 << 2)
#define PAGE_TABLE_SECTION_4BIT (1 << 4)
&nnbsp; #define PAGE_TABLE_SECTION_TYPE (0x2)
/*段大小*/
#define SECTION_SIZE 0x100000
//根據(jù)虛擬地址和頁表基地址確定頁表項(xiàng)所在的物理地址
unsigned int get_pgtindex_addr(unsigned int viraddr,unsigned int pgtaddr)
{
unsigned int addr;
/*[31:14]頁表基地地址
*[13: 2]虛擬地址>>20位得到的page index
*[1 : 0]總是為0,因?yàn)槊恳豁?xiàng)占用4byte
*/
addr = (pgtaddr & PAGE_TABLE_BASE_MASK) | (((viraddr & VIRADDR_MASK) >> 20) << 2);
return addr;
}
//獲取頁表項(xiàng)
unsigned int get_page_entry(unsigned int phyaddr)
{
unsigned int entry_value;
/*[31:20]section base address
*[19:12]
*[11:10]AP
*[9]
*[8:5]Domain
*[4]:1
*[3]:C
*[2]:B
*[1:0]:Type
*/
entry_value = (phyaddr & PHYADDR_MASK) | PAGE_TABLE_SECTION_AP |\
PAGE_TABLE_SECTION_CACHE_WB | PAGE_TABLE_SECTION_4BIT|\
PAGE_TABLE_SECTION_TYPE;
return entry_value;
}
/*創(chuàng)建一級頁表:段描述符*/
void create_page_table()
{
int i;
unsigned int pgt_index_addr;
unsigned int viraddr,phyaddr,pgtaddr;
/*我們代碼的起始運(yùn)行地址0x00000000在這里需要注意的是:當(dāng)我們開啟MMU后,cpu發(fā)出的地址都會被MMU攔截,要想程序正常運(yùn)行,pc所用的的地址必須是虛擬地址。然而此時(shí)cpu執(zhí)行下一條指令實(shí)際運(yùn)行的地址是物理地址,但是MMU會將此物理地址當(dāng)作虛擬虛擬地址處理。暈,亂套了。為了解決這個(gè)問題,我們通常的做法是,讓開啟MMU的附近地址指令的虛擬地址和物理地址空間做一個(gè)等價(jià)的映射。在這里我們將0x00000000開始的1M物理空間映射到0x00000000開始的虛擬地址空間。*/
phyaddr = SRAM_START_ADDR;
viraddr = phyaddr;
pgtaddr = PAGE_TABLE_BASE;
pgt_index_addr = get_pgtindex_addr(viraddr,pgtaddr);
*(volatile unsigned int *)pgt_index_addr = get_page_entry(phyaddr);
#if 1
/*映射64MSDRAM*/
for(phyaddr = SDRAM_ADDR_START,viraddr = VMRAM_ADDR_START;\
phyaddr < SDRAM_ADDR_END;phyaddr += SECTION_SIZE,\
viraddr += SECTION_SIZE)
{
pgtaddr = PAGE_TABLE_BASE;
pgt_index_addr = get_pgtindex_addr(viraddr,pgtaddr);
*(volatile unsigned int *)pgt_index_addr = get_page_entry(phyaddr);
}
#endif
/*映射IO地址空間*/
phyaddr = PHIO_ADDR_START;
viraddr = VMIO_ADDR_START;
pgtaddr = PAGE_TABLE_BASE;
pgt_index_addr = get_pgtindex_addr(viraddr,pgtaddr);
*(volatile unsigned int *)pgt_index_addr = get_page_entry(phyaddr);
return;
}
/*
Care must be taken if the translated address differs from the
untranslated address as several instructions following the
enabling of the MMU may have been prefetched with the MMU off
(using physical = virtual address - flat translation) and enabling
the MMU may be considered as a branch with delayed execution. A similar
situation occurs when the MMU is disabled. Consider the following code
sequence:
MRC p15, 0, R1, c1, C0, 0: Read control rejectio
ORR R1, #0x1
MCR p15,0,R1,C1, C0,0 ; Enable MMUS
Fetch Flat
Fetch Flat
Fetch Translated
*/
void init_mmu()
{
unsigned long mmu_table_base = PAGE_TABLE_BASE;
asm(
/*set Translation Table Base(TTB) register*/
"mrc p15,0,r0,c2,c0,0\n"
"mov r0,%0\n"
"mcr p15,0,r0,c2,c0,0\n"
/*set Domain Access Control register*/
"mrc p15,0,r0,c3,c0,0\n"
"mvn r0,#0\n"
"mcr p15,0,r0,c3,c0,0\n"
/*Enable MMU*/
"mrc p15,0,r0,c1,c0,0\n"
"orr r0, #0x1\n"
"mcr p15,0,r0,c1,c0,0\n"
"mov r0,r0\n"
"mov r0,r0\n"
"mov r0,r0\n"
:
:"r"(mmu_table_base)
:"r0"
&nnbsp; );
return;
}
start.S
.text
.global _start
_start:
#define pWTCON 0x53000000
#define CLKDIVN 0x4c000014
#define MPLLCON 0x4c000004
#define MEMBASE 0x48000000
#define SRAM_2_ADDR 2048
#define SDRAM_2_ADDR 0x30004000
#define SRAM_SIZE 4096
start_code:
@set the cpu to SVC32 mode
mrs r0,cpsr
bic r0,r0,#0x1f
orr r0,r0,#0xd3
msr cpsr,r0
@打開指令cache
mrc p15,0,r0,c1,c0,0
@orr r0,r0,#0x1000
mcr p15,0,r0,c1,c0,0
@設(shè)置棧指針位置
ldr sp,=4096
@關(guān)看門狗
bl disable_watchdog
@初始化系統(tǒng)時(shí)鐘
bl init_sys_clock
@初始化內(nèi)存
bl init_sdram
@拷貝SRAM的代碼到SDRAM
bl copy_to_sdram
@創(chuàng)建頁表
bl create_page_table
@啟動(dòng)MMU
bl init_mmu
@運(yùn)行l(wèi)ed程序
ldr sp,=0xa3000000 @重設(shè)sp指針,mmu之后,@cpu操作的地址都是虛擬地址
ldr pc,_main
halt_loop:
b halt_loop
_main:
.word main
disable_watchdog:
@關(guān)看門狗,不然cpu會不斷重啟
ldr r0,=pWTCON
mov r1,#0
str r1,[r0]
mov pc,lr
init_sys_clock:
@目前為止,cpu工作在12MHZ頻率下
@提升cpu工作頻率FCLK:HCLK:PCLK=1:2:4
ldr r0,=CLKDIVN
mov r1,#3
str r1,[r0]
@ifHDIVN=1,must asynchronous buf mode
mrc p15,0,r0,c1,c0,0
orr r0,r0,#0xc0000000
mcr p15,0,r0,c1,c0,0
@設(shè)置MPLL,使cpu工作在202.80MHZ
ldr r0,=MPLLCON
ldr r1,=0x000a1031
str r1,[r0]
mov pc,lr
copy_to_sdram:
ldr r0,=SRAM_2_ADDR @第二階段代碼起始地址(2048)
ldr r1,=SDRAM_2_ADDR @第二階段代碼存放的物理地址(0x30004000)
1:
ldr r2,[r0],#4
str r2,[r1],#4
cmp r0,#SRAM_SIZE
bne 1b
mov pc,lr
init_sdram:
@初始化sdram
ldr r0,=MEMBASE @13個(gè)寄存器的首地址
adrl r1,SMRDATA @13個(gè)寄存器值存放的地址
mov r2,#52 @13 * 4 = 52
add r2,r2,r1
1:
ldr r3,[r1],#4
str r3,[r0],#4
cmp r1,r2
bne 1b
/*every thing is fine now*/
mov pc,lr
.ltorg @聲明一個(gè)數(shù)據(jù)緩沖池的開始
SMRDATA:
.word 0x2201d110 @BWSCON 設(shè)置BANK3位寬16,使能nWait,使能UB/LB
.word 0x0700 @BANKCON0
.word 0x700 @BANKCON1
.word 0x700 @BANKCON2
.word 0x700 @BANKCON3
.word 0x700 @BANKCON4
.word 0x700 @BANKCON5
.word (3 << 15) + (1 << 0) @BANKCON6
.word 0x18001 @BANKCON7
.word (1 << 23) + (2 << 18) + (1256 << 0) @REFRESH
.word (1 << 7) + (1 << 0) @BANKSIZE
.word (3 << 4) @MRSRB6
.word (3 << 4) @MRSRB7
led.c
//#include "s3c2410.h"
/*虛擬地址*/
#define GPFCON (*(volatile unsigned long *) 0xb0000050)
#define GPFDAT (*(volatile unsigned long *) 0xb0000054)
//初始化
static inline void led_init()
{
//GPFCON -> [8:15]清零
GPFCON &= ~(0xff << 8);
//GPF4 GPF5 GPF6 GPF7設(shè)為輸出模式
GPFCON |= 0x55 << 8;
//輸出高低平,關(guān)閉四路LED燈
GPFDAT |= 0xf << 4;
return;
}
//關(guān)閉LED
static inline int led_off()
{
GPFDAT |= 0xf << 4;
return 0;
}
//延時(shí)函數(shù)
static inline int delay_time(int time)
{
int i,j;
//讓兩個(gè)for循環(huán)作為延時(shí)
for(i = 0;i < time;i ++)
for(j = 0;j < time;j ++);
return 0;
}
//流水燈
static inline int run_water_led(int count)
{
int i = 0;
while(count --)
{
led_off();
delay_time(500);
for(i = 4;i < 8;i ++)
{
GPFDAT &= ~(0x1 << i);
delay_time(500);
}
}
return 0;
}
int main()
{
led_init();
run_water_led(5);
led_off();
delay_time(5000);
return 0;
}
Makefile:
led.bin:start.S led.c
arm-none-linux-gnueabi-gcc -c start.S -o start.o
arm-none-linux-gnueabi-gcc -c mmu.c -o mmu.o
arm-none-linux-gnueabi-gcc -c led.c -o led.o
#arm-none-linux-gnueabi-ld -Ttext 0x00000000 start.o led.o -o led_elf
arm-none-linux-gnueabi-ld -Tmap.lds start.o mmu.o led.o -o led_elf
arm-none-linux-gnueabi-objcopy -O binary -S led_elf led.bin
cp led.bin /tftpboot
clean:
rm -rf *.o led_elf led.bin
連接腳本(map.lds)
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
/*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
firtst 0x00000000:
&nbsnbsp;{
start.o
mmu.o
}
second 0xa0004000:
AT(2048)
{
led.o
}
}